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a b s t r a c t

In this paper, we consider the problem of computing the nearest stable matrix to an unstable one.
We propose new algorithms to solve this problem based on a reformulation using linear dissipative
Hamiltonian systems: we show that a matrix A is stable if and only if it can be written as A = (J − R)Q ,
where J = −JT , R ⪰ 0 and Q ≻ 0 (that is, R is positive semidefinite and Q is positive definite).
This reformulation results in an equivalent optimization problem with a simple convex feasible set. We
propose three strategies to solve the problem in variables (J, R,Q ): (i) a block coordinate descentmethod,
(ii) a projected gradient descent method, and (iii) a fast gradient method inspired from smooth convex
optimization. Thesemethods requireO(n3) operations per iteration, where n is the size of A. We show the
effectiveness of the fast gradientmethod compared to the other approaches and to several state-of-the-art
algorithms.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we focus on the continuous linear time invariant
systems of the form

ẋ(t) = Ax(t) + Bu(t),

where A ∈ Rn,n, B ∈ Rn,m, x is the state vector and u is the input
vector. Such a system is stable if all eigenvalues ofA are in the closed
left half of the complex plane and all eigenvalues on the imaginary
axis are semisimple. Therefore the stability solely depends on A,
and the matrix B that weights the inputs can be ignored to study
stability.

For a given unstable matrix A, the problem of finding the small-
est perturbation that stabilizes A, or, equivalently finding the near-
est stable matrix X to A is an important problem (Orbandexivry,
Nesterov, & Van Dooren, 2013). More precisely, we consider the
following problem. For a given unstable matrix A, compute

inf
X∈Sn,n

∥A − X∥
2
F , (1)

where ∥ · ∥F denotes the Frobenius norm of a matrix and Sn,n is
the set of all stable matrices of size n × n. This problem occurs
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for example in system identification where one needs to identify
a stable system from observations (Orbandexivry et al., 2013).

The converse of problem (1) is the stability radius problem,
where a stable matrix A is given and one looks for the smallest
perturbation that moves an eigenvalue outside the stability re-
gion (Byers, 1988; Hinrichsen & Pritchard, 1986). Both problems
are nontrivial because even a small perturbation on the coefficients
of the matrix may move the eigenvalues in any direction and the
perturbed matrix may well have eigenvalues that are far from
those of A (Orbandexivry et al., 2013). However, the nearest stable
matrix problem appears to be more difficult since it requires to
push all eigenvalues from the unstability region into the stability
region while the stability radius problem only requires to move a
single eigenvalue on the boundary of the stability region.

The various distance problems for matrices have been a topic of
research in the numerical linear algebra community, for example,
matrix nearness problems (Higham, 1988b), the structured sin-
gular value problem (Packard & Doyle, 1993), the robust stability
problem (Zhou, 2011), the distance to bounded realness for Hamil-
tonian matrices (Alam, Bora, Karow, Mehrmann, & Moro, 2011),
and the nearest defective matrix (Wilkinson, 1984).

Another related problem is to find the closest stable polynomial
to a given unstable one. This was addressed by Moses and Liu
(1991), where an algorithm using the alternating projection ap-
proach in Schur parameter spacewas developed. But the technique
developed in Moses and Liu (1991) is limited and cannot be applied
to other types of systems. In Burke, Henrion, Lewis, and Overton
(2006b), authors stabilize fixed order controllers using nonsmooth,
nonconvex optimization. A MATLAB toolbox called HIFOO (H∞
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fixed order optimization) was designed to solve fixed order stabi-
lization and local optimization problems (Burke, Henrion, Lewis,
& Overton, 2006a). In D’haene, Pintelon, and Vandersteen (2006),
authors stabilize transfer functions using a two step iterative pro-
cedure that guaranteed stable transfer function models from noisy
data.

We note that in the literature, a stable matrix is sometimes
considered to satisfy Re(λ) < 0 for all its eigenvalues λ; see,
e.g., Byers (1988), Hinrichsen and Pritchard (1986) and Orbandex-
ivry et al. (2013). To avoid the confusion, we call such matrices
asymptotically stable. The set of all asymptotically stable matrices
is open. This follows from the fact that the eigenvalues of a matrix
depend continuously on its entries (Ostrowski, 1960). However,
the set Sn,n is neither open nor closed, because Aϵ ̸∈ Sn,n for ϵ > 0,
but A ∈ Sn,n, where⎡⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
−1 ϵ 0 . . . 0
0 0 −1 . . . 0
. . . . . . . . . . . . . . .

0 0 0 . . . −1

⎤⎥⎥⎥⎥⎥⎦
  

=:Aϵ

→

⎡⎢⎢⎢⎢⎢⎣
0 1 0 . . . 0

−1 0 0 . . . 0
0 0 −1 . . . 0
. . . . . . . . . . . . . . .

0 0 0 . . . −1

⎤⎥⎥⎥⎥⎥⎦
  

=:A

,

and Bδ ∈ Sn,n for δ < 0, but B ̸∈ Sn,n, where⎡⎢⎢⎢⎢⎢⎣
0 1 0 . . . 0
0 δ 0 . . . 0
0 0 −1 . . . 0
. . . . . . . . . . . . . . .

0 0 0 . . . −1

⎤⎥⎥⎥⎥⎥⎦
  

=:Bδ

→

⎡⎢⎢⎢⎢⎢⎣
0 1 0 . . . 0
0 0 0 . . . 0
0 0 −1 . . . 0
. . . . . . . . . . . . . . .

0 0 0 . . . −1

⎤⎥⎥⎥⎥⎥⎦
  

=:B

.

Further, the set Sn,n of stable matrices in (1) is highly noncon-
vex (Orbandexivry et al., 2013) and therefore it is in general
difficult to compute a global optimal solution to problem (1).

Our work is mainly motivated by the work in Orbandexivry
et al. (2013), where a nearby stable approximation X of a given
unstable system A is constructed by means of successive convex
approximations of the set of stable systems. Our principle strategy
for computing a nearby stable approximation to a given unsta-
ble matrix is to reformulate the highly nonconvex optimization
problem (1) into an equivalent (non-convex) optimizationproblem
with a convex feasible region onto which points can be projected
relatively easily. We aim to provide in many cases better approxi-
mations than the one obtained with the code from Orbandexivry
et al. (2013) by using the concept of linear dissipative Hamiltonian
systems.

Notation: In the following, we denote A ≻ 0 and A ⪰ 0 if A
is symmetric positive definite or symmetric positive semidefinite,
respectively. The set Λ(A) denotes the set of all eigenvalues of A.

1.1. Dissipative Hamiltonian systems

A dissipative Hamiltonian (DH) system in the linear time invari-
ant case can be expressed as

ẋ = (J − R)Qx,

where the function x → xTQx with Q = Q T
∈ Rn,n positive

definite describes the energy of the system, J = −JT ∈ Rn,n

is the structure matrix that describes flux among energy storage
elements, and R ∈ Rn,n with R = RT

⪰ 0 is the dissipation matrix
that describes energy dissipation in the system. DH systems are
special cases of port-Hamiltonian systems, which recently have
received a lot attention in energy based modeling; see, e.g., Golo,
van der Schaft, Breedveld, and Maschke (2003), van der Schaft
(2006) and van der Schaft and Maschke (2013). An important
property of DH systems is that they are stable, i.e., all eigenvalues
of matrix A = (J − R)Q are in the closed left half of the complex
plane and all eigenvalues on the imaginary axis are semisimple.
This follows from the fact that Q is symmetric positive definite.
Indeed, for any nonzero vector z one has

Re
(
z∗

(
Q

1
2 AQ−

1
2
)
z
)

= Re
(
z∗

(
Q

1
2 JQ

1
2 − Q

1
2 RQ

1
2
)
z
)

= −z∗Q
1
2 RQ

1
2 z ≤ 0,

since R is positive semidefinite, where ∗ stands for the complex
conjugate transpose of a matrix or a vector. The semisimplicity of
the purely imaginary eigenvalues of (J − R)Q follows from Mehl,
Mehrmann, and Sharma (2016, Lemma3.1). The various structured
distances of a DH system from the region of asymptotic stability
have recently been studied in Mehl et al. (2016) for the complex
case and in Mehl, Mehrmann, and Sharma (2017) for the real case.

This paper is organized as follows. In Section 2, we reformulate
the nearest stablematrix problem using the notion of DHmatrices.
We also provide several theoretical results necessary to obtain our
reformulation. In Section 3, three algorithms are proposed to solve
the reformulation. In Section 4, we present numerical experiments
that illustrate the performance of our algorithms and compare the
results with several state-of-the-art algorithms.

2. DH framework for checking stability

In this section, we present a new framework based on dissi-
pative Hamiltonian systems to attack the nearest stable matrix
problem (1). Our main idea is to reformulate the nonconvex op-
timization problem (1) into an equivalent optimization problem
with a relatively simple convex feasible set. In order to do this, let
us define a DH matrix.

Definition 1. A matrix A ∈ Rn,n is said to be a DH matrix if
A = (J − R)Q for some J, R,Q ∈ Rn,n such that JT = −J , R ⪰ 0
and Q ≻ 0.

Clearly from the previous section every DH matrix is stable.
In our terminology, (Beattie, Mehrmann, & Xu, 2015 Corollary
2) implies that every stable matrix A is similar to a DH matrix,
i.e., there exists T nonsingular such that T−1AT = (J−R)Q for some
JT = −J , R ⪰ 0 and Q ≻ 0. In fact we prove something stronger:
a stable matrix itself is a DH matrix, as shown in the following
lemma.

Lemma 2. Every stable matrix is a DH matrix.

Proof. Let A be stable. By Lyapunov’s theorem (Lancaster &
Tismenetsky, 1985), there exists P ≻ 0 such that

AP + PAT
⪯ 0. (2)
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Let us define

J :=
AP − (AP)T

2
, R := −

AP + (AP)T

2
,Q := P−1. (3)

By (2) we get R ⪰ 0 and A = (J − R)Q . This implies that A is a DH
matrix. □

In Mehl et al. (2016, Lemma 3.1), authors provide several
properties of DHmatrices forQ ≻ 0.We nowprove a similar result
but for any Q ⪰ 0, that is, allowing Q to be singular.

Lemma 3. Let J, R,Q ∈ Rn,n be such that JT = −J , RT
= R ⪰ 0, and

Q T
= Q ⪰ 0 singular. Then

(i) All eigenvalues of (J − R)Q are in the closed left half of the
complex plane. Further, (λ, x) ∈ iR×Cn

\ {0} is an eigenpair of
(J − R)Q if and only if RQx = 0 and (JQ − λIn)x = 0, where iR
denotes the set of all purely imaginary complex numbers and In
is the identity matrix of size n.

(ii) All nonzero purely imaginary eigenvalues of the matrix (J−R)Q
are semisimple.

Proof. Proof of (i) is elementary and follows from the fact that
JT = −J , RT

= R ⪰ 0, and Q T
= Q ⪰ 0. We prove (ii) by

contradiction. Let λ(̸= 0) ∈ iR be an eigenvalue of (J − R)Q .
Suppose thatλ is not semisimple and that the set {x0, x1, . . . , xm−1}

forms a Jordan chain of lengthm at λ (Horn & Johnson, 1985), that
is, x0 ̸= 0, and

((J − R)Q − λIn)x0 = 0,

((J − R)Q − λIn)x1 = x0, (4)
((J − R)Q − λIn)x2 = x1,

...

((J − R)Q − λIn)xm−1 = xm−2.

Since x0 is an eigenvector of (J − R)Q corresponding to the eigen-
value λ, from (i) we have that

(JQ − λIn)x0 = 0 and RQx0 = 0. (5)

From (4), x0 and x1 satisfy

((J − R)Q − λIn)x1 = x0. (6)

Note that λ ̸= 0 implies that Qx0 ̸= 0. Multiplying (6) by x∗Q from
the left hand side we obtain that

x∗

0Q ((J − R)Q − λIn)x1 = x∗

0Qx0.

This implies that

− x∗

1Q (JQ − λIn)x0 − x∗

1QRQx0 = x∗

0Qx0, (7)

because Q ⪰ 0, R ⪰ 0, and JT = −J . Using (5) in (7), we get that
x∗

0Qx0 = 0. This implies that x0 = 0 as Q ⪰ 0 and Qx0 ̸= 0 which is
a contradiction since the generator of the Jordan chain x0 is never
zero. Therefore λ is a semisimple eigenvalue of (J − R)Q . □

Remark4. Wenote that ifQ is positive definite, thenwehave JQ =

Q−
1
2 (Q

1
2 JQ

1
2 )Q

1
2 , i.e., JQ is similar to a real skew-symmetricmatrix

Q
1
2 JQ

1
2 . Therefore, all eigenvalues of JQ are purely imaginary and

semisimple, and as a consequence of Mehl et al. (2016, Lemma
3.1) all purely imaginary eigenvalues of (J −R)Q are semisimple. If
Q ⪰ 0 and singular, then by Lemma 3 all nonzero purely imaginary
eigenvalues of (J − R)Q are semisimple but zero eigenvalues of
(J − R)Q can still be non semisimple and hence the matrix is
not stable. However, this matrix is on the boundary of the set of
unstablematrices. This gives us amotivation to look for the nearest
matrix (J−R)Q , with JT = −J, R ⪰ 0, andQ ⪰ 0 that is either stable
or on the boundary of the set of unstable matrices.

In view of Lemmas 2 and 3, a matrix is stable if and only if it is a
DHmatrix. Thus the set Sn,n of stablematrices can be characterized
as the set of DH matrices, i.e.,

Sn,n
=

{
(J − R)Q ∈ Rn,n

| JT = −J, R ⪰ 0, Q ≻ 0
}
.

This yields the following equivalent reformulation of the noncon-
vex problem (1):

inf
X∈Sn,n

∥A − X∥
2
F = inf

J=−JT , R⪰0,Q≻0
∥A − (J − R)Q∥

2
F . (8)

DH characterization of the set Sn,n also gives an alternative way
to see that the set Sn,n is neither open (because of the constraint
R ⪰ 0) nor closed (because of the constraint Q ≻ 0). Further, we
have

inf
J=−JT , R⪰0,Q≻0

f (J, R,Q ) = inf
J=−JT , R⪰0,Q⪰0

f (J, R,Q ), (9)

where f (J, R,Q ) = ∥A − (J − R)Q∥
2
F . Note that the set{

(J, R,Q ) | J, R,Q ∈ Rn,n, JT = −J, R ⪰ 0, Q ⪰ 0
}

is closed but
not bounded. Therefore the infimum on the right hand side of (9)
may not be attained. As a summary we have the following desired
reformulation of our problem (1).

Theorem 5. Let A ∈ Rn,n. Then,

inf
X∈Sn,n

∥A − X∥
2
F = inf

J=−JT , R⪰0,Q⪰0
∥A − (J − R)Q∥

2
F . (10)

In the next section, we will attack the nearest stable matrix
problem (1) using the reformulation from Theorem 5, i.e., by trying
to solve

inf
J=−JT , R⪰0,Q⪰0

∥A − (J − R)Q∥
2
F . (11)

An advantage of this reformulated optimization problem over (1)
is that the feasible domain of (11) is convex and that it is relatively
easy to project onto it (see Section 3.2). Hence it will be easy to use
standard optimization schemes to solve it.

If the matrix A is stable, then by Lemma 2 it can be written as
A = (J − R)Q with J = −JT , R ⪰ 0 and Q ≻ 0, hence AQ−1

= J − R.
In that case, we can solve the following system to recover (J, R,Q ):
denoting P = Q−1,

AP = J − R, P ≻ 0, R ⪰ 0, J = −JT .

This is interesting because it provides a new (convex) way to check
whether a matrix is stable, checking whether the above system is
feasible. Moreover, if A is not stable so that the above system is
infeasible, we can solve instead

inf
J=−JT , R⪰0, P⪰In

∥AP − (J − R)∥2
F , (12)

which provides an approximate solution to (11) using (J − R)P−1

as a stable approximation of A. This solution could be used as
an initialization for nearest stable matrix algorithms. From the
standard stability formulation (2), as far as we know, it is not
possible to extract a stable approximation fromanunstablematrix.
This is another advantage of our formulation.

Remark 6 (Uniqueness). The decomposition of a stable matrix A
as A = (J − R)Q , where JT = −J, R ⪰ 0, and Q ≻ 0, is non-
unique. First, there is always a scaling degree of freedom since
A = (αJ − αR)(Q/α) for any scalar α > 0. In the numerical
algorithms, we will impose that ∥J − R∥2 = ∥Q∥2 to remove this
degree of freedom; see the discussion in Section 3.2.1. Second, in
view of (2) and (3), the non-uniqueness of (J − R)Q can be (partly)
characterizedwith thematrix P ≻ 0 that certifies the stability of A,
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which is not unique (Boyd, El Ghaoui, Feron, & Balakrishnan, 1994).
Intuitively, the set of stable matrices is in an n2-dimensional space
while the representation (J − R)Q has 3

2n
2
+

n
2 degrees of freedom

(since R and Q are symmetric, and J is skew-symmetric). Replacing
J , R and Q in terms of the variable P ≻ 0 according to (3) leads to
the formulation

min
X,P≻0

∥A − X∥F such that XP + PXT
⪯ 0,

which is difficult to solve numerically (Orbandexivry et al., 2013)
(highly non-linear constraints). In fact, a key contribution of this
paper is the reformulation (9) of the nearest stablematrix problem
in term of DH matrices that will allow us to derive numerically ef-
ficient algorithms; see Section 3. Characterizing precisely the non-
uniqueness of this decomposition (and possibly taking advantage
of it in a numerical algorithm) is a direction for further research.

3. Algorithmic solutions to the nearest stable matrix problem

In this section, we propose three algorithms to compute ap-
proximate solutions to our reformulation of the nearest stable
matrix problem (11) in variables J, R and Q .

3.1. Block coordinate descent method

Popular and simple schemes in optimization are the block-
coordinate descent (BCD) methods: at each step, fix a subset
of the variables and optimize over the remaining variables; see,
e.g., Wright (2015) and Shi, Tu, Xu, and Yin (2016) for recent
surveys. For our problem (11), there is a natural partition of the
variables in order to make the subproblems convex: (J, R) vs.Q .
Hence, we propose the following simple scheme:

• Initialize (J, R,Q ) such that J = −JT , R ⪰ 0 and Q ⪰ 0.
• Iteratively update (J, R) and Q :

– subproblem-1: fix Q and optimize over (J, R), that is,
solve

min
J=−JT , R⪰0

∥A − (J − R)Q∥
2
F .

– subproblem-2: fix (J, R) and optimize over Q , that is,
solve

min
Q⪰0

∥A − (J − R)Q∥
2
F .

Using dedicated semidefinite programming (SDP) solvers such
as SDPT3 (Toh, Todd, & Tütüncü, 1999) or SeDuMi (Sturm, 1999),
this can be very easily implemented; especially if combined with a
modeling system for convex optimization like CVX (Grant, Boyd, &
Ye, 2008). However, (most) SDP solvers use interiormethodswhich
are computationally expensive when n increases (as they perform
Newton steps at their core).Moreover,wehave to solve these prob-
lems many times, and it is not necessary to solve them up to high
precision. We have therefore implemented fast gradient methods
to solve these subproblems: these are optimal first-order methods
for smooth convex optimization; see Nesterov (2004, p.90).

This method works relatively well, especially to decrease the
objective function initially. However, when getting closer to a
stationary point, it has a zig-zagging behavior and converges rather
slowly. We note that the method is guaranteed to converge to a
stationary point of (11) since it is a two-block coordinate descent
method (Grippo & Sciandrone, 2000).

Since we use a first-order method to solve the subproblems,
the total computational cost of this approach is O(Kn3) operations
per iteration, where K is the number of inner iterations. In our
implementation, we used K = 1000 along with a stopping crite-
rion based on the evolution of the iterates: if the distance between

two iterates is smaller than 1% of the distance between the first
two iterates, we stop the inner iterations — this means that the
improvement is negligible compared to the first iteration hence it
is profitable to start optimizing over the other set of variables.

3.2. Projected gradient descent

One of themostwell-known and straightforward algorithmone
can implement for (11) is projected gradient descent. For a given
matrix Z ∈ Rn,n, we recall that the projection PS̄(Z) of Z onto the
set of skew-symmetric matrices S̄ is given by

PS̄(Z) =
Z − ZT

2
, (13)

and we have

min
JT=−J

∥Z − J∥F = ∥Z − PS̄(Z)∥F =

Z + ZT

2


F
. (14)

Similarly, the projection P⪰(Z) of Z onto the cone of semidefinite
matrices is given by

P⪰(Z) = U (max(Γ , 0))UT , (15)

where UΓ UT is an eigenvalue decomposition of the symmetric
matrix Z+ZT

2 , and we have

min
R⪰0

∥Z − R∥2
F = ∥Z − P⪰(Z)∥2

F

= ∥PS̄(Z)∥
2
F +

∑
λ∈Λ(Γ ),λ<0

λ2, (16)

see, e.g., Higham (1988a). This follows directly from univariance
of ∥ · ∥F to orthogonal transformations.

In order to simplify the description of our algorithms, we define

D :=
{
D ∈ Rn,n

| D = J − R, J = −JT , R ⪰ 0
}
.

It is interesting to note that it is as easy to project a given matrix Z
ontoD, as it is equivalent to project onto the set of skew-symmetric
matrices, S̄ , and the set of positive semidefinite matrices, S⪰,
separately. More precisely, we have the following lemma.

Lemma 7. Let Z ∈ Rn,n, then

min
D∈D

∥Z − D∥
2
F = ∥Z − (PS̄(Z) − P⪰(−Z))∥2

F ,

wherePS̄(Z) andP⪰(−Z) are as defined in (13) and (15), respectively.

Proof. Observe that

min
D∈D

∥Z − D∥
2
F = min

JT=−J, R⪰0
∥Z − (J − R)∥2

F

= min
R⪰0

(
min
JT=−J

∥(Z + R) − J∥2
F

)
= min

R⪰0

(Z + R) − PS̄(Z)
2
F = min

R⪰0

Z + ZT

2
+ R

2

F
, (17)

where the third equality is due to (14) because

PS̄(Z + R) =
(Z + R) − (Z + R)T

2
=

Z − ZT

2
= PS̄(Z).

Thus the result follows by using (16) in (17). □

Therefore, from Lemma 7, the projection of Z ontoD is given by

PD(Z) = PS̄(Z) − P⪰(−Z).

In the following sections, by D we mean a matrix of the form
J − R with JT = −J and R ⪰ 0, and we denote f (D,Q ) :=
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1
2∥A − DQ∥

2
F , so our aim is to solve minD∈D,Q⪰0f (D,Q ). We im-

plemented a projected gradient decent algorithm for the nearest
stable matrix problem (11); see Algorithm 1. The computational
cost of Algorithm 1 requires O(n3) operations per iteration.

Algorithm 1 Projected Gradient Descent (Grad) for the Nearest
Stable Matrix Problem (11)
Require: A ∈ Rn,n, maxiter.
Ensure: J ∈ S̄ , R ⪰ 0 and Q ⪰ 0 such that ∥A − (J − R)Q∥F is

minimized.
1: Choose some initial matrices J ∈ S̄ , R ⪰ 0 and Q ⪰ 0 (see

Section 3.4), set D = J − R.
2: for k = 1 : maxiter do
3: Compute the search direction (opposite of the gradient):

∆D = −∇Df (D,Q ) = (A − DQ )Q T ,

∆Q = −∇Q f (D,Q ) = DT (A − DQ ).

4: Compute a steplength δ (see Section 3.2.1) and the next
iterate:

D = PD (D + δ∆D) ,

Q = P⪰

(
Q + δ∆Q

)
.

5: Scale D,Q so that λmax(QQ T ) = λmax(DTD); see Sec-
tion 3.2.1.

6: end for
7: J =

D−DT

2 , R =
−D−DT

2 .

3.2.1. Line search and scaling
As noted in the previous section, if D is fixed (resp.Q ), the

problem is convex in Q (resp.in D). If we would apply a gradient
method on these subproblems, a possible choice for the steplength
that would guarantee convergence is 1/L where L is the Lipschitz
constant of the gradient of the objective function (Nesterov, 2004).
The Lipschitz constant of the gradient ∇Q f (D,Q ) of f with respect
toQ (for fixedD) is given byλmax(DTD)while the Lipschitz constant
of the gradient ∇Df (D,Q ) of f with respect to D (for fixed Q ) is
given by λmax(QQ T ), where we used λmax(Z) to denote the largest
eigenvalue of a matrix Z . Therefore, it makes sense to scale D and
Q such that L = λmax(DTD) = λmax(QQ T ) while choosing an
initial steplength δ = 1/L. Note that this allows to remove the
scaling degree of freedom since this imposes ∥J − R∥2 = ∥Q∥2;
see also Remark 6. In order to avoid to computing the maximum
eigenvalues ofDTD andQQ T from scratch at each step,we use a few
steps of the power method to update the initial value (since Q and
D do not change too much between two iterations). We combined
this with a backtracking line search: if the objective function has
not decreased, the step is divided by a fixed constant larger than
one until decrease is achieved. It turns out that in most cases,
especially when getting closer to stationary points, the steplength
of 1/L allows to decrease the objective function.

3.3. Fast projected gradient descent

For smooth convex optimization problems, the fast gradient
method (FGM), also known as Nesterov’s method or the acceler-
ated gradient method, guarantees the objective function to de-
crease to the optimal value at a rate of O

(
1
k2

)
where k is the iter-

ation number (or linearly with factor (1−
√

µ/L) for strongly con-
vex function with parameter µ and whose gradient has Lipschitz
constant L) as opposed to gradient method converging at a rate of
O(1/k) (or linearly with factor (1 − µ/L) in the strongly convex

case). This method is an optimal first-order method for smooth
convex optimization, that is, nomethod can achieve asymptotically
faster convergence using the same (first-order) information (Nes-
terov, 2004). In a nutshell, the idea behind FGM is to use the
information from previous iterates (as opposed to using the infor-
mation only of the previous iterate in gradient descent) similarly
as conjugate gradient methods; we refer the reader to Nesterov
(2004) for more details and discussions.

For non-convex problems, the behavior of FGM is more difficult
to analyze and, as far as we know, is not very well understood.
Ghadimi and Lan (2016) have shown recently that FGM can be
used successfully in the non-convex and unconstrained case, and
achieves the best known rate of convergence in that case also.
However, there is a straightforward practical way to ensure con-
vergence using a simple safety procedure: if the FGM does not
decrease the objective function, it can be reinitialized by perform-
ing a standard gradient step (note that this idea is also sometimes
used for FGM in the convex case as it has been observed to work
sometimes better, the reason being that FGMdoes not decrease the
objective function monotonically). Moreover, doing so every fixed
number of iterations allows to apply standard convergence results
of the projected gradient method in non-convex optimization.

Algorithm2 Fast ProjectedGradientMethod (FGM) for theNearest
Stable Matrix Problem (11)
Require: A ∈ Rn,n, maxiter, 0 < α1 < 1.
Ensure: J ∈ S̄ , R ⪰ 0 and Q ⪰ 0 such that ∥A − (J − R)Q∥F is

minimized.
1: Choose some initial matrices J ∈ S̄ , R ⪰ 0 and Q ⪰ 0 (see

Section 3.4).
2: D = J − R.
3: Y = D, Z = Q .
4: for k = 1 : maxiter do
5: Dp = D, Qp = Q .
6: Compute the search direction (opposite of the gradient):

∆Y = −∇Y f (Y ,Q ) = (A − YQ )Q T ,

∆Z = −∇Z f (D, Z) = DT (A − DZ).

7: Compute a steplength δ (see Section 3.2.1) and the next
iterate:

D = PD (Y + δ∆Y ) ,

Q = P⪰ (Z + δ∆Z ) .

8: if no steplength allows the decrease of the objective func-
tion then

9: Restart the fast gradient : Y = D, Z = Q , αk+1 = α1.
10: else
11: Update Y and Z:

Y = D + βk(D − Dp), Z = Q + βk(Q − Qp),

where βk =
αk(1−αk)
α2
k+αk+1

with αk+1 ≥ 0 s.t. α2
k+1 =

(1 − αk+1)α2
k .

12: end if
13: Scale Y , Z,D,Q so that λmax(QQ T ) = λmax(DTD); see

Section 3.2.1.
14: end for
15: J =

D−DT

2 , R =
−D−DT

2 .

For the fast gradient version, we use the same line search as for
the gradient method. However, in this case, because the algorithm
is not guaranteed to be monotonously decreasing the objective
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function, the next iteratemight not decrease the objective function
for any steplength. In that case, asmentioned above, we reinitialize
the fast gradient schemewhich amounts to perform a gradient step
at the next iteration.

A possible explanation of the good performances of this fast
gradient method designed for nonconvex problem is that (1) the
feasible set is convex, and (2) the objective function can be locally
well approximated with a convex function:

∥A − (D + ∆D)(Q + ∆Q )∥F

= ∥A − DQ − ∆DQ − D∆Q − ∆D∆Q∥F

≈ ∥A − DQ − ∆DQ − D∆Q∥F ,

for small (∆D, ∆Q ) since ∥∆D∆Q∥F will be small compared to the
other terms. In otherwords, although (11) is non-convex, it is close
to a convex optimization problem in the neighborhood of any point
(D,Q ). In fact, rather surprisingly, we observed the following

(1) the FGM almost never needs to restart, and (2) the
steplength of 1/L is almost always acceptable (making the
search for a steplength inexpensive in most cases).

In our experiments, FGMneeded to restart or the steplength 1/L
was not acceptable mostly during the first iterations.

The computational cost per iteration of FGM is (almost) the
same as the gradient descent method, with O(n3) operations.

3.4. Initialization

A natural way to initialize our algorithm is to use Q = In, where
In is the identity matrix of size n. In that case, by Lemma 7, the
optimal J and R are given by

J =
A − AT

2
and R = P⪰

(
−A − AT

2

)
.

It seems this initialization works remarkably well. In particular, it
allows the algorithms to identify better local minima than using
the strategy based on the formulation (12), although we observed
it has in most cases a larger initial error.

4. Numerical experiments

In this section, we will compare our three approaches to
solve (11) (namely, BCD from Section 3.1, Grad from Section 3.2,
and FGM from Section 3.3) with the following two algorithms:

• SuccConv. A method from Orbandexivry et al. (2013) that
uses successive convex approximation, kindly made avail-
able to us by François-Xavier Orban de Xivry.

• BFGS. A method based on the BFGS code HANSO v.2.1 avail-
able from http://www.cs.nyu.edu/overton/software/hanso/
and kindly made available to us by Lewis and Overton
(2009). Recall that BFGS is a quasi-Newton method with a
particular rank-two correction of the approximation of the
Hessian at each iteration. This approach uses a penalty in
the objective function to enforce stability hence does not
guarantee all iterates to be stable. For n ≥ 50, we used
the limited memory variant (using 50 rank-one factors to
estimate the Hessian). Moreover, the algorithms terminates
when it cannot find a descent direction (note that we tried
to reinitialize the algorithm from the last iterate but itwould
terminate again, after one iteration).

We will compare these approaches on four types of matrices:

• Type1. Thematrices proposed in Orbandexivry et al. (2013):
the entries on the subdiagonal are equal to one and the
entry at position (1, n) is equal to −0.1. The eigenvalues are
located on a circle around the origin; see Fig. 5. The best
known approximation on the boundary of the set of stable
matrices is the same matrix where the entry at position
(1, n) is set to zero, with error 0.1.

• Type 2. Grcar matrices of order k are a banded Toeplitz
matrix with its subdiagonal set to −1 and both its main
and k superdiagonals set to 1. These matrices have all their
eigenvalues in the right complex plane. This type ofmatrices
was kindly recommended by Nicola Guglielmi during his
talk ‘Matrix stabilization using differential equations’ at the
9th Workshop on Structural Dynamical Systems: Computa-
tional Aspects (SDS2016); see https://sites.google.com/site/
workshopsds2016/programm.Wewill use the samevalue of
k, namely k = 3. These matrices have all their eigenvalues
in the right half of the complex plane.

• Type 3. Randomly generated matrices where each entry
follows a Gaussian distribution N(0,1). These matrices have
in average half their eigenvalues in the left complex plane
and half in the right.

• Type 4. Randomly generated matrices where each entry
follows a uniform distribution in the interval [0,1]. Except
for an eigenvaluewith large positive part (Perron–Frobenius
theorem), the others are evenly spread on the right and left
halves of the complex plane.

For each type of matrices, we generate matrices of sizes 10, 20,
50 and 100. We run the algorithm for at most 20, 100, 300 and
600 s respectively and record the final error. For all algorithms, we
use the initialization described in Section 3.4 because it performed
consistently better than random initializations and than the ini-
tialization obtained from solving (12). For n = 100, we do not
run SuccConv because one iteration takes more than 10 minutes
(it takes about 2 minutes for n = 60).

TheMatlab code is available from https://sites.google.com/site/
nicolasgillis/. All tests are preformed usingMatlab on a laptop Intel
CORE i5-3210M CPU @2.5 GHz 2.5 GHz 6GB RAM. Note that FGM
can be applied to matrices of size up to a thousand on such a
machine, although we do not provide numerical experiments for
n larger than 100.

Tables 1–4 display the final error ∥A − X∥F obtained by the
matrix X generated by each algorithm and, in brackets, the number
of iterations performed. Bold indicates the error of the best solution
found.

Figs. 1–4 display the evolution of the error ∥A − X∥F for each
algorithm for each input matrix.

We observe the following:

• In all cases, FGM outperforms BCD and Grad, and is clearly
the best to solve our formulation (11).

• For small matrices (n ≤ 20), there is no clear winner
between FGM, SuccConv and BFGS. The main reason is that
these methods converge to different local minima. In fact,
although they are initialized at the same (stable) starting
point (see Section 3.4), they use rather different strategies;
FGM uses a gradient-like descent method on problem (11),
SuccConv uses successive convex approximation, and BFGS
applies Quasi-Newton to a penalized variant of (1)–so that
they can converge to the basin of attraction of different local
minima. As an illustration, Fig. 5 displays the eigenvalues of
the nearest stablematrices computedby FGM, SuccConv and
BFGS for the matrix of type 1 of size 10. We observe that the
solutions are rather different — they correspond to different
local minima which explains why the algorithms saturate
at different objective function values on Fig. 1. In particular,

http://www.cs.nyu.edu/overton/software/hanso/
https://sites.google.com/site/workshopsds2016/programm
https://sites.google.com/site/workshopsds2016/programm
https://sites.google.com/site/workshopsds2016/programm
https://sites.google.com/site/nicolasgillis/
https://sites.google.com/site/nicolasgillis/
https://sites.google.com/site/nicolasgillis/
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Table 1
Final error ∥A − X∥F obtained by the algorithms for matrices A of size 10.

Type 1 Type 2 Type 3 Type 4

Initial error 1.50 4.16 5.25 5.24

BCD 0.74 (170) 3.37 (170) 2.36 (179) 3.68 (162)
Grad 0.87 (114983) 3.37 (114052) 2.22 (114701) 3.66 (114594)
FGM 0.57 (120641) 3.31 (123055) 2.07 (118766) 3.46 (116893)
SuccConv 0.33 (221) 3.39 (1243) 1.79 (1272) 3.48 (1311)
BFGS 0.38 (811) 3.35 (965) 1.61 (1671) 3.71 (1403)

Table 2
Final error ∥A − X∥F obtained by the algorithms for matrices A of size 20.

Type 1 Type 2 Type 3 Type 4

Initial error 2.18 6.07 9.15 10.32

BCD 1.57 (245) 4.98 (246) 3.99 (252) 6.99 (251)
Grad 1.62 (376522) 5.02 (373161) 3.83 (384363) 6.98 (383315)
FGM 1.38 (379203) 4.77 (391338) 3.11 (390444) 6.57 (388281)
SuccConv 1.21 (251) 5.68 (259) 2.97 (155) 6.50 (257)
BFGS 1.18 (1572) 4.85 (4012) 2.82 (1752) 6.66 (759)

Table 3
Final error ∥A − X∥F obtained by the algorithms for matrices A of size 50.

Type 1 Type 2 Type 3 Type 4

Initial error 3.50 9.77 25.36 25.90

BCD 3.03 (133) 8.56 (133) 10.79 (139) 18.19 (140)
Grad 2.90 (121154) 8.44 (118495) 10.38 (125581) 18.28 (125405)
FGM 2.50 (121385) 8.07 (119355) 8.23 (123023) 17.15 (124506)
SuccConv 3.49 (4) 9.51 (4) 21.40 (4) 23.71 (4)
BFGS 3.32 (797) 9.36 (3437) 19.17 (3116) 23.93 (435)

Table 4
Final error ∥A − X∥F obtained by the algorithms for matrices A of size 100.

Type 1 Type 2 Type 3 Type 4

Initial error 4.98 13.89 49.72 51.68

BCD 4.74 (61) 12.69 (68) 22.62 (65) 37.50 (66)
Grad 4.41 (56998) 12.23 (54735) 21.34 (59276) 37.54 (58277)
FGM 3.87 (53768) 11.69 (54603) 16.90 (56733) 35.40 (55890)
SuccConv 4.98 (1) 13.89 (1) 49.72 (1) 51.68 (1)
BFGS 4.87 (2418) 13.82 (3316) 37.61 (1352) 48.99 (1253)

Fig. 1. Evolution of the error ∥A−X∥F for the different algorithms for matrices A of
size 10.

Fig. 2. Evolution of the error ∥A−X∥F for the different algorithms for matrices A of
size 20.
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Fig. 3. Evolution of the error ∥A−X∥F for the different algorithms for matrices A of
size 50.

Fig. 4. Evolution of the error ∥A−X∥F for the different algorithms for matrices A of
size 100.

FGM has two eigenvalues with large negative real parts,
while the two others algorithms only have one (at different
locations). Note that both solutions of SuccConv and BFGS
have two eigenvalues that are located in the right half of the
complex plane, although very close to the imaginary axis
(about 10−7 for SuccConv and 10−10 for BFGS), while our
algorithm is guaranteed to provide stable matrices (unless
0 is not a semisimple eigenvalue); see Lemma 3.

To confirm this behavior, we have run these three al-
gorithms on 100 matrices of type 3 and 4 of size n =

10. For matrices of type 3, FGM provided the best solution
for 14 matrices, SuccConv for 46 and BFGS for 40. FGM
(resp.SuccConv and BFGS) had average error 1.95 (resp.1.83
and 1.86) with standard deviation 0.60 (resp.0.60 and 0.66).

Fig. 5. Eigenvalues of the solutions computed by FGM, SuccConv and BFGS for the
matrix of type 1 of dimension 10.

For matrices of type 4, FGM provided the best solution
for 11 matrices, SuccConv for 35 and BFGS for 54. FGM
(resp.SuccConv and BFGS) had average error 3.30 (resp.3.28
and 3.26) with standard deviation 0.29 (resp.0.30 and 0.30).
Therefore, it seems that SuccConv and BFGS tend to identify
in general better local minima for these small randomly
generated matrices using the initialization from Section 3.4,
although it is difficult to explain rigorously.

• For large matrices (n ≥ 50), FGM outperforms SuccConv
and BFGS providing better approximations much faster. In
particular, SuccConv is extremely slow (performing only 4
iterations within 5 minutes for n = 50): the reason is
that it uses second-order information and each iteration is
expensive. BFGS is able to perform more iterations but it
is not able to locate good local minima and stabilizes at
stationary pointswithmuch larger error than BCD, Grad and
FGM.

• Although it is not clear for all the figures, FGM always had
the fastest initial convergence, that is, it always decreased
the objective function initially the fastest.

5. Conclusion

We have presented a new way to look at the nearest stable
matrix problem by using the concept of dissipative Hamiltonian
systems. This resulted in an equivalent optimization problem
with a simpler convex feasible set; see the formulation (11). We
have proposed three algorithms namely BCD, Grad and FGM to
solve (11). We found that FGMworks very well in most situations.
For large matrices (n ≥ 50), it outperforms all other approaches.
For small matrices (n ≤ 20), SuccConv and BFGS are sometimes
able to identify better local minima starting from the same initial
point.

We hope this work paved the way to more efficient methods
to solve the nearest stable matrix problem based on our new
formulation (11). A particular promising way of future research
would be to develop more sophisticated techniques to solve (11)
(e.g., using some second-order information) and to apply global-
ization schemes to try to find the global minimum. For example,
we observed that using random starting point does not lead to
good solutions in general hence coming upwith good initialization
schemes would also be a direction for further research.
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